复习用,后续再添加内容

次梯度定义:

g(x)={uRng(y)g(x)+u,yx}\partial g(x) =\{u\in\mathbb R^{n}|g(y)\geq g(x)+\langle u,y-x\rangle\}

次梯度最优性条件

x=argminxRng(x)0g(x)x^*=\operatorname*{argmin}_{x\in\mathbb R^n}g(x)\Longleftrightarrow 0\in g(x^*)

邻近点算子

proxαg(y)=argminxRn(12xy22+αg(x)){\rm prox}_{\alpha g}(y) =\operatorname*{argmin}_{x\in\mathbb R^n} \left(\frac 12 \|x-y\|_2^2+\alpha g(x)\right)

邻近点梯度法

x(k+1)=proxαkλg(x(k)αkf(x(k)))x^{(k+1)}={\rm prox}_{\alpha_k\lambda g}\left(x^{(k)}-\alpha_k\nabla f\left(x^{(k)}\right)\right)

使用Nestrov加速

image-20250521004632119