不等式

sup inf 不等式

infA=sup(A)\inf A = -\sup(-A)

supAfsupAgsupAfg,infAfinfAgsupAfg.\left|\sup_Af-\sup_Ag\right|\leq\sup_A|f-g|,\quad\left|\inf_Af-\inf_Ag\right|\leq\sup_A|f-g|.

概率

Markov’s Inequality

Markov’s inequality - Wikipedia

Suppose XX is a nonnegative random variable and a>0a>0, then,

P(Xa)E[X]aP(X\geq a)\leq \frac{\mathbb E[X]}{a}

Chernoff Bound

Chernoff bound - Wikipedia

Suppose X1,,XnX_1,\cdots,X_n are independent random variables taking values in {0,1}\{0,1\}. Let X=i=1nXiX=\sum_{i=1}^nX_i and μ=E[X]\mu=\mathbb E[X]. Then for any δ>0\delta>0,

P(X(1+δ)μ)(eδ(1+δ)1+δ)μ,P(X(1+δ)μ)(eδ(1+δ)1+δ)μ.\begin{gather*} P\left(X\geq(1+\delta)\mu\right)\leq \left(\frac{e^\delta}{(1+\delta)^{1+\delta}}\right)^\mu,\\ P\left(X\leq(1+\delta)\mu\right)\leq \left(\frac{e^{-\delta}}{(1+\delta)^{1+\delta}}\right)^\mu. \end{gather*}

For any δ(0,1)\delta\in(0,1),

P(Xμδμ)2eδ2μ/3P(\left|X-\mu\right|\geq \delta\mu)\leq 2e^{-\delta^2\mu/3}

代数

Cauchy-Schwarz

(i=1naibi)2(i=1nai2)(i=1nbi2)\left(\sum_{i=1}^na_ib_i\right)^2\leq\left(\sum_{i=1}^na_i^2\right)\left(\sum_{i=1}^nb_i^2\right)

幂平均不等式

Mp(x1,,xn)=(1ni=1nxip)1pM_p(x_1,\cdots,x_n)=\left(\frac{1}{n}\sum_{i=1}^nx_i^p\right)^{\frac{1}{p}}

Mp(x1,,xn)Mq(x1,,xn)if p<qM_p(x_1,\dots,x_n)\le M_q(x_1,\dots,x_n)\quad\text{if}~p<q

p=1,q>1p=1,q>1

1ni=1nxi(1ni=1nxik)1k(1ni=1nxi)k1ni=1nxik(i=1nxi)knk1i=1nxik\begin{gather*} \frac1n\sum_{i=1}^nx_i\leq\left(\frac1n\sum_{i=1}^nx_i^k\right)^{\frac1k}\\ \left(\frac1n\sum_{i=1}^nx_i\right)^k\leq \frac1n\sum_{i=1}^nx_i^k\\ \left(\sum_{i=1}^n x_i\right)^k \leq n^{k-1}\sum_{i=1}^nx_i^k \end{gather*}

(i=1nxi)ki=1nxik\left(\sum_{i=1}^n x_i\right)^k\geq \sum_{i=1}^n x_i^k

定理

中值定理

ff[a,b][a,b]连续,在(a,b)(a,b)可微,则存在一点a<c<ba<c<b,使得

f(c)=f(b)f(a)baf^\prime(c) = \frac{f(b)-f(a)}{b-a}

中值定理 - 维基百科,自由的百科全书

Envolope Theorem (包络定理)

假设f(x,α)f(\mathbf x,\boldsymbol \alpha)Rn+l\mathbb R^{n+l}上的可微实函数,其中xRn\mathbf x\in\mathbb R^n为自变量,αRl\boldsymbol \alpha\in\mathbb R^{l}为参数,目标是选择适当的x\mathbf x以最大化/最小化ff。设V(α)=f(x,α)V(\boldsymbol\alpha)=f(\mathbf x^*,\boldsymbol \alpha),其中x\mathbf x^*ff取最大值/最小值时的x\mathbf x,则有

dVdα=fαx=x\frac{\text{d}V}{\text d\boldsymbol \alpha} = \left.\frac{\partial f}{\partial \boldsymbol \alpha}\right|_{\mathbf x=\mathbf x^*}

包络定理 - 维基百科,自由的百科全书

假设f(x,θ)f(\mathbf x,\boldsymbol\theta)关于θ\boldsymbol \theta连续可微,则

v(θ)=supxGf(x,θ)v(\boldsymbol \theta) = \sup_{\mathbf x\in G}f(\mathbf x,\boldsymbol\theta)

x\mathbf x^*为单值解处可微,且其导数满足Dθv[θ]=Dθf[x(θ),θ]D_{\boldsymbol \theta}v[\theta]=D_{\boldsymbol \theta}f[\mathbf x(\boldsymbol \theta),\boldsymbol \theta]